Simultaneous optimisation of dynamic power , area and delay in behavioural synthesis
نویسندگان
چکیده
Concern over power dissipation coupled with the continuing rise in system size and complexity means that there is a growing need for high-level design tools capable of automatically optimising systems to take into account power dissipation, in addition to the more conventional metrics of area, delay and testability. Current methods for reducing power consumption tend to be ad-hoc: for example, slowing down, or turning off idle parts of the system, or a controlled reduction in power supply. The behavioural synthesis system described in this paper features an integrated incremental power estimation capability, which makes use of activity profiles, generated automatically through simulation of a design on any standard VHDL simulator; accurate circuit-level cell models (generated, again automatically, via Spice simulation); and a comprehensive system power model. This data, along with similar estimators for area and delay, guides the optimisation of a design towards independent, user-specified objectives for final area, delay, clock speed, and energy consumption. In addition, a range of power reducing features are included encompassing: supply voltage scaling, clock gating, input latching, input gating, low-power cells, and pipelined and multicycle units. These are automatically exploited during optimisation as part of the area/delay/power dissipation trade-off process. The resulting system is capable of reducing the estimated energy consumption of several benchmark designs by factors of between 3.5 and 7.0 times. Furthermore, the design exploration capability enables a range of alternative structural implementations to be generated from a single behavioural description, with differing area/delay/power trade-offs.
منابع مشابه
Switched-Capacitor Dynamic Threshold PMOS (SC-DTPMOS) Transistor for High Speed Sub-threshold Applications
This work studies the effects of dynamic threshold design techniques on the speed and power of digital circuits. A new dynamic threshold transistor structure has been proposed to improve performances of digital circuits. The proposed switched-capacitor dynamic threshold PMOS (SC-DTPMOS) scheme employs a capacitor along with an NMOS switch in order to effectively reduce the threshold voltage of ...
متن کاملDelay-Scheduled Controllers for Inter-Area Oscillations Considering Time Delays
Unlike the existing views that was introduced the existence of delay caused by the transmission of wide area measurement system data (WAMS) into the controllers input of the power oscilation damping (POD) by communication networks as a reason for poor performance of the POD controllers. This paper shows that the presence of time delay in the feedback loop may improve the performance of a POD co...
متن کاملDesign Supplementary Controller Based on Stabilizing Effect of Delay for Damping Inter Area Oscillations in a Power System
The delay associated with signal transmission through the wide-area measurement system reduces the functionality of the power oscillation damping control system. One of the important issues is the poor operation of the supplementary controller against delay existence, which limits the efficiency of damping of ancillary equipment, such as SVCs in a power system. This paper as a solution proposes...
متن کاملمدل عملکردی تحلیلی FPGA برای پردازش با قابلیت پیکربندی مجدد
Optimizing FPGA architectures is one of the key challenges in digital design flow. Traditionally, FPGA designers make use of CAD tools for evaluating architectures in terms of the area, delay and power. Recently, analytical methods have been proposed to optimize the architectures faster and easier. A complete analytical power, area and delay model have received little attention to date. In addi...
متن کاملFast Mux-based Adder with Low Delay and Low PDP
Adders, as one of the major components of digital computing systems, have a strong influence on their performance. There are various types of adders, each of which uses a different algorithm to do addition with a certain delay. In addition to low computational delay, minimizing power consumption is also a main priority in adder circuit design. In this paper, the proposed adder is divided into s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000